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Abstract. Examples of different pure quantum states which are not distinguishable by the finite
set of their marginal distributions are presented.

The complete information about a pure state of a quantum mechanical system is encoded in
a complex-valued wavefunction9(u), whereu usually stand for positionq or momentum
p. Another representation of the quantum state is possible through the Wigner distribution
functionW(q, p) = 1

2π

∫
9(q− q ′/2)9∗(q+ q ′/2) exp(−ipq ′) dq ′ which is a real function

of position and momentum. Here atomic units withe = m = h̄ = 1 are used. The
Wigner function takes on negative values for certain non-classical states and so cannot
be interpreted as ordinary probability distribution and be measured directly. The modern
method of quantum-state characterization known as phase-space tomography [1–4] is based
on the measurements of the Wigner function projections, also called marginal distributions,
pr(q, α) = ∫ W(q cosα − p sinα, q sinα + p cosα) dp over the different directionsα in
phase space. The set of such projections in the angle intervalα ∈ [0, π ] also completely
defines the quantum state. The Wigner distribution function (and therefore the wavefunction)
can be reconstructed from this set by using the inverse Radon transform. A problem is that
the real experimental data contain only a finite number of the Wigner function projections.
In this letter we shall show that there are distinct pure states which are not distinguishable
by a finite number of their marginal distributions.

Let us consider two pure quantum states defined in position representation by the
wavefunctions91(q) and92(q). These wavefunctions describe the same quantum state
if there is a complex numbera such that91(q) = a92(q), otherwise the quantum states
are different. We are looking for different quantum states which have the same marginal
distributionspr(q, α) for a certain number of angles{αi}. We restrict our consideration to
the two states defined by the complex-conjugate wavefunctions91(q) = 9∗2(q). From that,
one can easily observe the equality of their position distributions:pr1(q, 0) = |91(q)|2 =
|92(q)|2 = pr2(q, 0).

For further consideration, we introduce another definition of the marginal distribution
pr(u, α) which is related to the fractional Fourier transform (FT)Rα[9(q)](u) of the
wavefunction9(q) [5, 6]:

Rα[9(q)](u) = F(u, α) =
∫ ∞
−∞

9(q)Kα(q, u)dq (1)
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with the kernel

Kα(q, u) = 1√
i2π sinα

exp

(
i
(q2+ u2) cosα − 2qu

2 sinα

)
. (2)

The kernel of this transform is a propagator of the non-stationary Schrödinger equation for
the harmonic oscillator. The fractional FT at angle 2πn (n is an integer) corresponds to the
identity operator. Forα = π/2, relationship (1) is the ordinary FT except for a constant
phase shift. One can say that the fractional FT of9(q) is another representation of the
quantum state along an axis making some angleα with the position axis in phase space.
Thus the quantum state can be described by9(q) in position representation that corresponds
to α = 0, or byRπ/2[9(q)](u) in momentum representation or byRα[9(q)](u) in arbitrary
α-representation.

The marginal distribution (or Radon–Wigner transform of9(q)) for angle α is the
squared modulus of the fractional FT [7] of the wavefunction in the position representation
9(q) where the angle is calculated from the position axis

pr(u, α) = |Rα[9(q)](u)|2. (3)

For α = 0, α = π/2 and α = π, the marginal distribution reduces to|9(q)|2,
|Rπ/2[9(q)](u)|2 and |9(−q)|2 respectively.

It is easy to see from (1)–(3) that the marginal distributions for complex-conjugate
functions9(q) and9∗(q) enjoy the following property:

|Rα[9(q)](u)|2 = |R−α[9∗(q)](u)|2 = |Rπ−α[9∗(q)](−u)|2. (4)

So if 91(q) is such that

|Rα[91(q)](u)|2 = |R−α[91(q)](u)|2 (5)

then the marginal distributions for angleα of 91(q) and 92(q) are identical:

|Rα[92(q)](u)|2 (4)= |R−α[91(q)](u)|2 (5)= |Rα[91(q)](u)|2.
From this it follows that the quantum state need not be uniquely determined by its

position |R0[9(q)](u)|2 = |9(u)|2 and momentum|Rπ/2[9(q)](u)|2 distributions [8].
Indeed, let the quantum state described in the position representation by the wavefunction
91(q) have an even momentum distribution:

|Rπ/2[91(q)](u)|2 = |Rπ/2[91(q)](−u)|2.
Then, applying (4), we observe that the quantum state described by the wavefunction
92(q) = 9∗1(q) has the same position and momentum distributions:|Rπ/2[92(q)](u)|2 =
|Rπ/2[9∗1(q)](u)|2

(4)= |Rπ/2[91(q)](−u)|2 = |Rπ/2[91(q)](u)|2.
It is easy to see that all even or odd complex conjugate wavefunctions91(q) and

92(q) have the same position and momentum distributions. From (1), (2) follows that the
fractional FT of an even or odd function satisfies

Rα[9(q)](u) = ±Rα[9(−q)](u) = ±Rα+π [9(q)](u) = ±Rα[9(q)](−u) (6)

where the+ sign stands for even, and the− sign for odd signals. Then the marginal
distributions of even and odd wavefunctions are even

|Rα[9(q)](u)|2 = |Rα[9(q)](−u)|2. (7)

In particular|Rπ/2[9(q)](u)|2 = |Rπ/2[9(q)](−u)|2, meaning, as we have seen above, that
even and odd complex-conjugate wavefunctions have the same position and momentum
distributions.
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It is easy to prove that relationship (5) also holds for self-fractional Fourier functions
(SFFFs)9α(q) which are the eigenfunctions of the fractional FT operator [9–11] for some
angleα:

Rα[9α(q)](u) = A9α(u) (8)

whereA is a complex constant factor such that|A| = 1. The Hermite–Gauss mode content
of such a wavefunction has been considered in [11].

As it has been shown in [12], if9α(q) is anα-SFFF with eigenvalueA then9∗α(q) is
also anα-SFFF with eigenvalueA. Moreover, the fractional FT ofα-SFFF with eigenvalue
A for angle−α is given by

R−α[9α(q)](u) = A∗9α(u). (9)

Then |Rα[9α(q)](u)|2 = |R−α[9α(q)](u)|2 = |Rα[9∗α(q)](u)|2, which corresponds to (5).
It follows from the additivity property for fractional FT:RαRβ = Rα+β (see [6]) and (8)
that, if a function is a SFFF forα with eigenvalueA, it is also one forαk (k = 1, 2, . . .) with
eigenvalueAk and then|Rkα[9α(q)](u)|2 = |Rkα[9∗α(q)](u)|2 = |9α(u)|2. This means that
the two states defined by the complex-conjugate wavefunctions91,α(q) = 9∗2,α(q) being
α-SFFF have the same marginal distributions for a sequence of anglesαk, wherek is an
integer. All these distributions equal the position distribution. Note that in general the
map of the marginal distributions for such quantum states, described byα-SFFF9α(q), is
periodic in the angle with periodα

|Rkα+β [9α(q)](u)|2 = |Rβ [9α(q)](u)|2. (10)

Moreover, using the additivity property for the fractional FT, we also derive that

Rβ [9α(q)](u) = Rα−(α−β)[9α(q)](u)
= ARβ−α[9α(q)](u) (11)

and, in particular, forβ = α/2 we have that the fractional FT of anα-SFFF at anglesα/2
and−α/2 are identical except for a constant phase factor which depends on the eigenvalue:

Rα/2[9α(q)](u) = AR−α/2[9α(q)](u). (12)

Then |Rα/2[9α(q)](u)|2 (12)= |R−α/2[9α(q)](u)|2 (4)= |Rα/2[9∗α(q)](u)|2, which corresponds
to (5).

So two quantum states defined by9α(q) and 9∗α(q) have the same marginal
distributions for the set of angleskα/2, wherek is an integer. The marginal distributions
|Rαk/2[9α(q)](u)|2 equal the position distribution only for evenk. Note that all SFFFs for
angles 2π/M, whereM is even, have the same momentum distribution as their complex
conjugates. In particular we can treat the odd or even wavefunctions as a SFFF for angleπ .
Then, using (12), we come to the equality of the momentum distributions of the quantum
states defined by9α(q) and9∗α(q) as has been shown above.

Finally, we can conclude that a finite number of marginal distributions, just like the
position and momentum ones cannot in general completely define a quantum state.
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